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Paris, 92295 Châatenay-Malabry Cedex, France

Received 20 November 2000; received in revised form 10 April 2001

Abstract

Two formulations of the Monte Carlo method based on the reciprocity principle, considered from both points of

view of the reverse path and the exchanged power, are developed and discussed. Their results are compared to those of a

conventional forward Monte Carlo approach in 1D benchmark cases involving gray media or actual gas-mixtures and

different optical thicknesses and thermal conditions. Gas radiative properties are treated in a correlated manner by a

CK model. Although these problems are 1D, the calculations have been carried out with 3D calculation grids in order

to check the capacity of the different approaches for dealing with actual 3D systems. Advantages and drawbacks of the

three formulations are discussed. In terms of computation time, it is not more expensive to obtain the results from the

three approaches (with only one calculation) than to obtain the results from one given approach. � 2002 Elsevier

Science Ltd. All rights reserved.

1. Introduction

Many methods have been developed to calculate ra-

diative transfer for laboratory or engineering appli-

cations [1,2], such as the Monte Carlo method, the

ray-tracing method, e.g., [3], the zone method, e.g., [4], the

discrete ordinates or interpolation method, e.g., [5–11],

the finite volume method, e.g., [12–15], the Pn method,
e.g., [16,17], etc. However, as radiative transfer modeling

requires accounting for some complex phenomena, such

as spectral effects due to gases, wall bidirectional and

bipolarized reflectivities, non-isotropic scattering, com-

plex 3D geometries including islands, couplings with

turbulent temperature and concentration fields, the

Monte Carlo approach appears today to be the most

suitable method because it allows all these phenomena

to be taken into account without approximation and

huge CPU time. The flexibility of this approach greatly

offsets its reputation of slow convergence.

The Monte Carlo method has been widely used in

radiative transfer since the first works in this domain [18–

20], as mentioned in detailed reviews by Howell [21] and

Farmer and Howell [22]. Many variance reduction pro-

cedures have been employed in particular cases [23–29].

Walters and Buckius [30,31] have developed a reverse

approach, called the emission path method, based on the

reciprocity principle, but using only its geometrical fea-

tures to calculate the radiative flux at a given boundary

point of a complex system. The optical path is then

considered in a reverse manner. To our knowledge,

Fournier [32], Cherkaoui et al. [33,34] and de Lataillade

et al. [35] are the first authors to use the reciprocity

principle from the point of view of the exchanged power.

They have applied this Monte Carlo method in nearly

isothermal conditions for 1D systems and have shown

that, for these particular conditions, the computation

time is much smaller than with a formulation of the

conventional Monte Carlo approach. Hybrid methods

have also been developed, i.e., with the zone method [36],

with the diffusion approximation to treat optically thick

media [22,37,38] or with the finite volume method [39].
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The most accurate models of gas radiative properties

are the line-by-line approach, considered as a reference,

and, in practice, narrow band models of which advan-

tages and limitations have been widely discussed by

Taine and Soufiani [40]. Liu and Tiwari [41] have ex-

plicitly used a statistical narrow-band model and have

pointed out the importance of the spectral correlations

effects, easily introduced in a Monte Carlo approach.

Fournier [32], Cherkaoui et al. [33,34] and de Lataillade

et al. [35] have deduced the probability distribution

functions of the absorption coefficient from the param-

eters of this model.

The aim of the present paper is to compare three

formulations of the Monte Carlo method. One is a

formulation of the conventional forward Monte Carlo

approach often cited in the literature; the two others are

based on the reciprocity principle, from the points of

view of the power exchanged between two cells and of

the forward and reverse ways to describe an optical

path. In all cases involving actual gas-mixtures, gas

Nomenclature

b spectral band index

B, F, G points of the system

c index of crossing of a given cell by an optical

path along this optical path

f ; f1; f2; f3 probability density functions
g; g2 Gauss quadrature point indices

h index of wall reflections along an optical

path

i; j; q cell indices

I0m ðT Þ equilibrium (or blackbody) spectral intensity

ðW m�2 ðcm�1Þ�1 sr�1Þ
kibg pseudo-spectral absorption coefficient in the

cell i (m�1)

l length of the optical path or of one of its

part (m)

L distance between the walls in a slab (m)

m cell index along an optical path

M index of the current cell along an optical

path

n optical path index

N total number of optical paths

Ni number of optical paths originating from

the cell i

Nij number of optical paths originating from

the cell i and crossing or encountering the

cell j

Np total number of crossings of a given cell by

an optical path

Nrc number of wall reflections along an optical

path between the points B and Fc
NS number of elementary surfaces in the sys-

tem

NV number of elementary volumes in the sys-

tem

Nx;Ny ;Nz number of spatial discretizations in the

directions x, y and z

Pð Þ probability

Pi radiative power in the cell i (W or W m�3)

P eaij power emitted by the cell i and absorbed by

the cell j (W)

P ei total power emitted by the cell i (W)

P exchij power exchanged between the cells i and j

(W)

r ratio of total equilibrium intensities

R;Rh;Ru random numbers

s position along a part of an optical path (m)

S area (m2)

t computation time (s)

Ti; Tcs ; Tw temperature of the cell i, of the slab

center, of the walls of the slab (K)

Vi volume of the cell i (m3)

x; y; z Cartesian coordinates (m)

Greek symbols

aj; ajm total, spectral absorptivity in the cell j

D initial direction of the optical path

Dmb width of the spectral band b (cm�1)

ewjm spectral emissivity of the wall j

h polar angle

jim spectral absorption coefficient of the cell i

(m�1)

m wavenumber (cm�1)

rð Þ standard deviation

sl cutoff level

smðBF Þ spectral transmissivity between the points B

and F

u circumferential angle

xg weight associated with the gth Gauss

quadrature point

X solid angle (sr)

Subscripts

w refers to a wall

Superscriptfð Þð Þ statistical estimation (mean over the contri-

butions of some or all the optical paths)
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radiative properties are treated in a correlated manner

by a CK model [42–45] based on the parameters of

Soufiani and Taine [46].

The three considered formulations of the Monte

Carlo method are detailed in Section 2, in which their

physical bases are also discussed. The implementation

techniques of these three approaches are given in Section

3. In Section 4, the results obtained from the different

formulations are compared in several benchmark cases,

for which reference solutions exist. The behaviors of

these three Monte Carlo formulations in many different

conditions are then analyzed and a methodology for the

best use of them is deduced.

2. Reciprocal and forward Monte Carlo formulations

In this paper, three different formulations of the

Monte Carlo method are presented and compared. Two

of them, called here the reciprocal methods, are based on

the exchange formulation of radiative transfer which

fulfills systematically the reciprocity principle. The other

one is a conventional Forward Method (FM). In this

approach, an optical path, which is stochastically gen-

erated from a point B to a point G, is used only for the

transport of radiative energy from the point B to the

point G, i.e., in the forward direction. In the reciprocal

approaches, the same optical path is used to calculate

directly the power exchanged between the points B and

G, i.e., the transport of radiative energy in both forward

and reverse directions. In Section 2.1, the exchange

formulation of radiative transfer which gives rise to the

reciprocal approaches is presented in terms of Proba-

bility Density Functions (PDF) which allow a statistical

resolution, detailed in Section 2.2. The behaviors of the

three approaches are discussed in Section 2.3.

2.1. Exchange formulation of radiative transfer

Let us consider an enclosure with non-isothermal

opaque walls, containing a non-isothermal, heteroge-

neous, absorbing and emitting medium. The medium

and the walls are divided into NV elementary volumes

and NS elementary surfaces, respectively, both of which

are called cells in the following. Each cell is assumed to

be isothermal, homogeneous and characterized by uni-

form radiative properties.

The main idea of the exchange formulation of radi-

ative transfer is that the radiative power (or radiative

flux) in the cell i can be written as a sum of exchange

terms with all the other cells j, i.e.,

Pi ¼
XNV þNS

j¼1
P exchij ¼

XNV þNS

j¼1
�P exchji ; ð1Þ

where P exchij is the radiative power exchanged between

the cells i and j, i.e., the difference between the power

emitted by the cell j and absorbed by the cell i and the

power emitted by the cell i and absorbed by the cell j. If

both cells i and j are volumes (see Fig. 1), P exchij is given

by

P exchij ¼
Z þ1

0

jim I0m ðTjÞ
�

� I0m ðTiÞ
� Z

Vi

Z
4p

XNp

c¼1
smðBFcÞ

�
Z ljc

0

jjm exp
��
� jjmsjc

�
dsjc

	
dXi dVi dm; ð2Þ

where I0m ðT Þ is the equilibrium spectral intensity and jim

the spectral absorption coefficient relative to the cell i. Np

represents the total number of crossings of the cell j by

a given optical path issued from the cell i. smðBFcÞ is the
spectral transmissivity between the source point B as-

sociated with dVi and Fc the cth inlet point in the cell j of
a given optical path. sjc is the abscissa, taken from Fc, of
the current point Gc in the cell j for the cth crossing. ljc
represents the length of the cth crossing of the cell j by
a given optical path. dXi is an elementary solid angle

issued from the source point B and centered around a

direction D. The spectral transmissivity is given by

smðBFcÞ ¼ exp

 
�
XMc�1

m¼1
jmmlm

!YNrc

h¼1
1ð � ewhmÞ; ð3Þ

where lm is the distance traveled through the cell m;

m ¼ 1 and m ¼ Mc correspond, respectively, to the first

cell crossed by an optical path (the cell i) and the last one

for the cth crossing (the cell j). Nrc is the number of wall

reflections along an optical path between the points B

and Fc, h the index of wall reflections along this optical
path and ewhm the local wall spectral emissivity.
In Eq. (2) the integration over the volume Vj has been

replaced by integrations over the solid angle 4p and the
length ljc, i.e.,

Fig. 1. Coupled elementary cells.
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dVjc
l2BGc

¼ dsjc dXi; ð4Þ

where lBGc is the length of an optical path between the

source point B and the current point Gc. After analytical

integration over the length ljc, the radiative power ex-
changed between the cells i and j becomes

P exchij ¼
Z þ1

0

jimI0m ðTiÞ
I0m ðTjÞ
I0m ðTiÞ



� 1

�
�
Z
Vi

Z
4p

XNp

c¼1
smðBFcÞajcm dXi dVi dm; ð5Þ

where ajcm is the spectral absorptivity associated with the

column of length ljc and defined by

ajcm ¼ 1� expð�jjmljcÞ: ð6Þ

In this formulation, an elementary exchange is an

exchange between an elementary volume dVi of the cell i
and an elementary column of length ljc crossing the cell
j. The reciprocity principle is clearly fulfilled by Eq. (5):

the ratio of the spectral power emitted by a cell i and

absorbed by a cell j to the spectral power emitted by j

and absorbed by i is equal to the ratio of the equilibrium

spectral intensities I0m ðTiÞ=I0m ðTjÞ.
Since the point B, the direction D and the wave-

number m are statistically independent, the correspond-
ing joint PDF fiðB;D; mÞ is equal to the product of the
PDF, f1i, f2i and f3i, associated with B; D and m, i.e.,

fiðB;D; mÞdVi dXi dm

¼ f1iðBÞ dVi f2iðDÞdXi f3iðmÞdm; ð7aÞ

¼ 1

Vi
dVi

1

4p
dXi

jimI0m ðTiÞRþ1
0

jimI0m ðTiÞdm
dm; ð7bÞ

¼ jimI0m ðTiÞdXi dVi dm
P ei

; ð7cÞ

where P ei is the total power emitted by the whole volume
Vi , over the whole spectrum for all directions, without

taking into account self-absorption by this volume. By

combining Eqs. (5) and (7c), we obtain

P exchij ¼ P ei

Z þ1

0

I0m ðTjÞ
I0m ðTiÞ



� 1

�
�
Z
Vi

Z
4p

XNp

c¼1
smðBFcÞajcmfiðB;D; mÞdXi dVi dm: ð8Þ

Eqs. (6)–(8) have been established for a volume–volume

exchange, but similar relations can be easily deduced for

volume–surface, surface–volume or surface–surface ex-

changes. If the cell j is a surface, the medium spectral

absorptivity ajcm is changed to the wall spectral emis-

sivity ewjm. If the cell i is a surface, integrations over the
volume Vi and the solid angle 4p are replaced by inte-

grations over the surface Si and the solid angle 2p in Eq.
(8) and the PDF becomes

fiðB;D; mÞdSi dXi dm

¼ f1iðBÞdSi f2iðDÞdXi f3iðmÞdm; ð9aÞ

¼ 1

Si
dSi

cosðhiÞ
p

dXi
ewimI0m ðTiÞRþ1

0
ewimI0m ðTiÞdm

dm; ð9bÞ

¼ ewimI0m ðTiÞ cosðhiÞdXi dSi dm
P ei

; ð9cÞ

where P ei is now the total power emitted by the surface Si.

2.2. Monte Carlo method approximation

A Monte Carlo method is a statistical method based

on the simulation of a large number of stochastic events.

Each stochastic event represents a possible realization of

the considered physical phenomenon. The solution of

the problem is obtained by averaging the contributions

of all the stochastic events. In radiative transfer, a sto-

chastic event is an optical path. In the FM, some power

associated with an optical path is emitted by a cell and

partially absorbed by each cell crossed by the optical

path. In the reciprocal Monte Carlo approaches, the

power exchanged between a source cell (cell from which

an optical path is built) and each cell crossed by the

optical path is directly calculated, as explained previ-

ously, along each optical path.

According to Eq. (8), each optical path is charac-

terized by a source point associated with the source cell

dVi or dSi, a direction D and a wavenumber m. That
means that the stochastic generation of an optical path

requires the independent stochastic generations of a

source point, a direction and a wavenumber according

to the three PDF defined in Eqs. (7a) and (7b) or (9a)

and (9b). Details about these generations are given in

Section 3.

If a large number Ni of optical paths are stochasti-

cally generated from the cell i using the PDF given by

Eqs. (7a) and (7b) or (9a) and (9b), a large number of

them, called Nij, cross or encounter the cell j and each of

these Nij optical paths provides one value for:

(i) P eaij , the power emitted by the cell i and absorbed by
the cell j in the FM;

(ii) P exchij , the power exchanged between the cells i and j in

the reciprocal approaches.

Statistical estimations of P eaij and P exchij , noted ePP ea
ij andePP exch

ij in the following, are obtained by averaging the

contributions of all the Ni optical paths (but only Nij

optical paths give rise to a non-zero contribution). Ob-

viously, the standard deviations of these quantities de-

crease as the number Ni of optical paths increases. ePP ea
ij is

simply given by
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ePP ea
ij ¼ P ei

Ni

XNij

n¼1

XNp

c¼1
smnðBin FjcnÞajcmn : ð10Þ

According to Eq. (8), ePP exch
ij is expressed as

ePP exch
ij ¼ P ei

Ni

XNij

n¼1

I0mnðTjÞ
I0mnðTiÞ

"
� 1

#XNp

c¼1
smnðBin FjcnÞajcmn : ð11Þ

In Eqs. (10) and (11), the absorption is treated as

a continuous phenomenon in a deterministic manner

(Beer law). In this hybrid Monte Carlo approach the

factor smn ðBin FjcnÞajcmn is deduced from Eqs. (3) and (6).

In a pure Monte Carlo approach, the absorption would

be stochastically treated. That means that the absorp-

tion would be total in only one cell j which would be

randomly chosen using an appropriate PDF not defined

here. Therefore, the product smnðBin FjcnÞajcmn would be

equal to 1 in this only cell j and equal to 0 in all the other

cells crossed by an optical path. The analytical treatment

used here in this hybrid approach gives rise to lower

standard deviations in the results, since it decreases the

number of stochastic variables [22].

In Eq. (11), the term including the ratio of the

equilibrium spectral intensities corresponds to the re-

verse direction of an optical path, with which emission

from the cell j and absorption by the cell i are associated.

The other term corresponds to the forward direction of

an optical path, with which emission from the cell i and

absorption by the cell j are associated.

At this stage, the FM and two reciprocal Monte

Carlo formulations based on Eq. (2) can be implemented

in order to calculate the radiative power (or the radiative

flux) in the cell q. In the FM, only the power transported

in the forward direction of an optical path is taken into

account (see Fig. 2). The radiative power in the cell q,

which is crossed or encountered by optical paths origi-

nating from all the system cells i, including the cell q, is

obtained by making the balance between absorption and

emission in this cell after all the optical paths have been

generated from all the cells i. A statistical estimation of

the radiative power in the cell q is then expressed as

ePP FM
q ¼

XNV þNS

i¼1

ePP ea
iq � P eq : ð12Þ

In the first reciprocal approach, called the Emission

Reciprocity Method (ERM), the radiative power is cal-

culated in the cell q, which is the source of the optical

paths (see Fig. 3). In other terms, only the powers ex-

changed between the cell q and all the cells, crossed or

encountered by the optical paths originating from the

cell q, are considered. A statistical estimation of the

radiative power in the cell q is then given by

ePP ERM
q ¼

XNV þNS

j¼1

ePP exch
qj : ð13Þ

Substituting Eq. (11) into Eq. (13) yields

ePP ERM
q ¼

P eq
Nq

XNq

n¼1

XMn

m¼1

I0mnðTmÞ
I0mnðTqÞ

"
� 1

#
smnðBqn FmnÞammn ; ð14Þ

where m ¼ 1 designates the cell q and m ¼ Mn the last

cell crossed by the nth optical path originating from the

cell q. Eq. (14) shows that the statistical estimation of the

radiative power (or radiative flux) in the cell q can be

calculated as soon as all the optical paths originating

from the cell q have been generated. Thus, the ERM

allows accurate calculation of the radiative power (or

radiative flux) in only one cell by simply allocating a

cell 1

cell 2

cell q

cell Ns+Nvcell i

FM

Forward direction of the optical path

Fig. 2. Principle of the calculation of the radiative power in the

cell q in the FM (the emitted power is calculated analytically).

Fig. 3. Principle of the calculation of the radiative power in the

cell q in the ERM.
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large number of optical paths starting from this cell.

This property has been used in the reverse method de-

veloped by Walters and Buckius [30,31]. However, these

authors do not use the reciprocity principle in terms of

exchanged power; they only describe the optical path in

a reverse manner. It is worth noting that, in the ERM,

the expression of the power emitted by the cell q is ex-

actly P eq ; indeed, as the energy is conserved along an

optical path the sum
PMn

m¼1 smnðBqn FmnÞammn in the nega-

tive term of Eq. (14) is equal to 1. Therefore, the error in

the ERM is only due to the statistical calculation of the

absorption term, like in the FM.

In the second reciprocal formulation, called the Ab-

sorption Reciprocity Method (ARM), the radiative

power is calculated in the cell q which is crossed or en-

countered by optical paths issued from all the system

cells i including the cell q (see Fig. 4). In other words, the

optical paths along which the exchanged powers are

considered cross or encounter the cell where the radia-

tive power is calculated. Therefore, a statistical estima-

tion of the radiative power in the cell q is given by

ePP ARM
q ¼

XNV þNS

i¼1
�ePP exch

iq : ð15Þ

It is worth noting that ePP exch
ij used in the ERM becomes

strictly equal to �ePP exch
ji used in the ARM only when the

total number N of optical paths tends to infinity.

Moreover, in the ARM like in the FM, the statistical

estimation of the radiative power (or radiative flux) in

the cell q can only be calculated when all the optical

paths originating from all the system cells i including the

cell q have been generated. The expression obtained by

substituting Eq. (11) into Eq. (15) can be derived from

Eq. (12) corresponding to the FM, if we consider the

following relation, arising from the reciprocity principle

P eq ¼
XNV þNS

i¼1
lim

Ni!þ1

P ei
Ni

XNiq

n¼1

I0mnðTqÞ
I0mnðTiÞ

XNp

c¼1
smnðBin FqcnÞaqcmn :

ð16Þ

In the ARM, the power emitted by the cell q is statisti-

cally reconstructed, by using the reciprocity principle,

from the power carried in the forward direction and

absorbed by the cell q. The paradoxical advantage of

this formulation lies in the following: although the

emitted power is approximated, the exchanged power is

correctly evaluated since the reciprocity principle is used

and therefore the ratio of the emitted and absorbed

powers is exact.

In conclusion, the main interest of a reciprocal ap-

proach (ERM or ARM) is that the power exchanged

between two cells at the same temperature is rigorously

null, as shown in Eqs. (11) and (13)–(15). This property

is only statistically verified by the FM. On the other

hand, it will be established in Section 2.3 that the energy

conservation principle, rigorously fulfilled by the FM, is

only statistically verified by the reciprocal approaches

developed here. However, it will be also established that

the approaches developed here based on the reciprocity

principle lead in many cases to more accurate results

than those of the FM.

2.3. Behaviors of the three Monte Carlo formulations

A simple fictitious case displays how the errors in the

three formulations depend on physical conditions. Let

us consider an isolated system consisting of two homo-

geneous gray zones exchanging radiative energy, the

zone 1 being included inside the zone 2 of which the size

is large. We assume that the external boundary of the

zone 2 is perfectly reflecting.

The total power emitted by the zone i (i ¼ 1; 2) is
noted P ei . A reciprocity factor r is defined as the ratio of

the total equilibrium intensities I02=I
0
1 . We also introduce

ai which is the fraction of the power emitted by the zone

i and absorbed by the zone i itself. As soon as the pa-

rameters ai are known, the problem is solved. In fact, eaai

results directly from the stochastic generations of the

source point and of the direction. Our purpose is to

understand how the error on the radiative power is in-

fluenced by the statistics, in other words, to determine

how this error depends on the statistical error on eaai.

The radiative powers in the zones 1 and 2 are defined

in the three previous methods (FM, ERM and ARM) by

the expressions

ePP FM
1 ¼ P e2 1ð � eaa2Þ � P e1 1ð � eaa1Þ; ePP FM

2 ¼ �ePP FM
1 ; ð17Þ

ePP ERM
1 ¼ P e1 1ð � eaa1Þ rð � 1Þ; ePP ERM

2 ¼ �ePP ARM
1 ; ð18Þ

Fig. 4. Principle of the calculation of the radiative power in the

cell q in the ARM.
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ePP ARM
1 ¼ P e2 1ð � eaa2Þ 1



� 1

r

�
; ePP ARM

2 ¼ �ePP ERM
1 : ð19Þ

According to these equations, the energy of the system is

rigorously conserved in the FM (ePP FM
1 þ ePP FM

2 ¼ 0). But,

in the ERM and the ARM, the sum ePP1 þ ePP2 depends on
the stochastic values of eaa1 and eaa2. In these two recip-
rocal approaches, the energy is statistically conserved. In

the same manner, the reciprocity principle is only sta-

tistically fulfilled in the FM, i.e., P e2 ð1� eaa2Þ becomes
strictly equal to rP e1 ð1� eaa1Þ only when the total number
N of stochastic optical paths tends to infinity (obviously,

when the total number of optical paths tends to infinity,

the three methods become equivalent). The reciprocity

principle is obviously fulfilled by ARM and ERM,

which are derived from Eq. (5). It can be verified in Eqs.

(18) and (19) that the ratio of the power emitted by the

zone 2 and absorbed by the zone 1 to the power emitted

by the zone 1 and absorbed by the zone 2 is rigorously

equal to r.

The standard deviations, noted r, are straightfor-
wardly deduced from the previous equations

r ePP FM
1

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P e2r eaa2ð Þ½ 
2 þ P e1r eaa1ð Þ½ 
2

q
;

r ePP FM
2

� �
¼ r ePP FM

1

� �
; ð20Þ

r ePP ERM
1

� �
¼ P e1 rj � 1jr eaa1ð Þ;

r ePP ERM
2

� �
¼ r ePP ARM

1

� �
; ð21Þ

r ePP ARM
1

� �
¼ P e2 1

���� � 1

r

����r eaa2ð Þ;

r ePP ARM
2

� �
¼ r ePP ERM

1

� �
: ð22Þ

If r is close to 1 (nearly isothermal configurations) the

ARM and the ERM give the smallest error. Since the

radiative power is close to zero, application of the reci-

procity principle ensures that the numerical values of ePP1
and ePP2 will be close to zero no matter what the values ofeaa1 and eaa2 are. That corroborates the results obtained by
Fournier [32] and Cherkaoui et al. [33,34], who also use

a reciprocal approach.

If r is far from 1, for instance r � 1 when zone 1 is a

flame surrounded by zone 2 filled with air at room

temperature, the error of the FM can become lower than

the error of the ARM and the ERM in one of the two

zones. Of course, the best result is obtained by com-

bining the ARM with the ERM, i.e., by considering the

result given by the ARM in one zone and the result given

by the ERM in the other one. However, the analysis is

much more complex when dealing with a large number

of zones. For instance, the ARM can be recommended if

we consider the exchange of a given cell with a given

zone, but the ERM can be better for the exchange with

another zone. If we consider all the exchanges, the FM

may also be the most accurate formulation. The stan-

dard deviations of the three methods have to be com-

pared in each cell.

It is worth noting at this point that many other for-

mulations combining FM, ARM, ERM do exist. Some

of them, though entirely based on the reciprocity prin-

ciple, fulfill rigorously the energy conservation principle

[32–34]. These methods deal with a huge ðNV þ NSÞ�
ðNV þ NSÞ matrix of which the coefficients are the local
exchanged powers ePP exch

ij . Therefore they cannot be ap-

plied to 3D systems containing typically 104 cells.

3. Implementation of the methods

The Monte Carlo method is based on the simulation

of a large number N of optical paths. In the three for-

mulations developed in this paper, the cell from which

an optical path is built is not generated stochastically.

The number of optical paths originating from each cell

are calculated in a deterministic manner. Two spatial

distribution techniques have been developed. One is

characterized by a Non-Uniform spatial Distribution

(NUD) of the optical path source points in the calcu-

lation domain; the number Ni of optical paths origi-

nating from the cell i is proportional to P ei . The other
technique uses a Uniform spatial Distribution (UD) of

the optical path source points, which leads to the same

number of optical paths originating from all the cells.

The three Monte Carlo formulations, described in Sec-

tion 2, can be associated with either the NUD or the UD

technique.

To build each optical path, the wavenumber, the

source point and the direction, characterizing each op-

tical path, have to be generated stochastically. The

wavenumber mn is deduced from R, a uniform random

number in [0-1], following the implicit expression

R ¼
Z mn

0

f3iðmÞdm ¼
R mn
0

jimI0m ðTiÞdmRþ1
0

jimI0m ðTiÞdm
: ð23Þ

Details are given in the Appendix A about the imple-

mentation of the CK model for absorbing-emitting

gases. To stochastically generate a source point B in a

cell of any shape, some points are randomly picked in

the smallest parallelepiped containing the cell, assuming

that all the points of the parallelepiped have the same

probability to be picked, until one is located inside the

cell. This point is then taken as the source point. Two

angles h and u are randomly generated to define the

initial direction of the optical path. These angles are

expressed as functions of two independent uniform [0-1]

random numbers Rh and Ru. For a volume element,

these functions are

h ¼ arccosð1� 2RhÞ; ð24aÞ
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u ¼ 2pRu; ð24bÞ

and, for an opaque surface element with diffuse emis-

sivity, they become

h ¼ arccos
ffiffiffiffiffi
Rh

p� �
; ð25aÞ

u ¼ 2pRu: ð25bÞ

The optical path is then completely defined. All the

stochastic generations detailed here are common to the

three methods.

In the same way, the same optical paths are used

in the three approaches, but differently. In the three

methods, an optical path is always built step by step

in the forward direction until the power carried in

this direction becomes less than a cutoff level, expressed

as a transmissivity sl (the choice of this cutoff level

is discussed in Section 4). Indeed, in order to de-

crease the number of stochastic variables and thus the

global standard deviation of the numerical solution

[22], the absorption is treated as a continuous phenom-

enon in a deterministic manner. Therefore, each volumic

cell j crossed Np times by an optical path absorbs a part

of the power, transported in the forward direction, equal

to

P eaijn ¼
P ei
Ni

XNp

c¼1
smnðBin FjcnÞajcmn : ð26Þ

In the FM, this amount of power is the contribution of

this optical path to the power absorbed by the cell j.

When the optical path encounters a wall, a fraction,

equal to the wall spectral emissivity, of the power carried

in the forward direction is absorbed by the wall, i.e., the

medium spectral absorptivity ajcmn is changed to the wall

spectral emissivity ewjmn in Eq. (26). The remaining power
leaves the wall in a direction which is randomly gener-

ated according to Eqs. (25a) and (25b). When the power

carried in the forward direction reaches the value of the

cutoff level, the remaining power is then totally absorbed

by the cell following, in the forward direction, the one

where the cutoff level has been reached.

In each cell j where power transported in the forward

direction is absorbed, the power exchanged between the

source cell i and this absorbing cell is easily calculated.

In the ERM, the contribution of this optical path to the

radiative power in the cell i is equal to

P exchijn ¼ P eaijn
I0mnðTjÞ
I0mnðTiÞ

"
� 1

#
: ð27Þ

In the same way, in the ARM, the contribution of this

optical path to the radiative power in the cell j is equal to

�P exchijn . When all the optical paths have been built from

all the cells, the final step consists in summing, in each

cell, all the contributions taken into account in the dif-

ferent methods.

It is worth noting that the results given by the three

methods are obtained simultaneously with only one

calculation. Another important point to note is that it is

not more expensive, in terms of computation time, to

obtain the results from the three methods than from

only one. Indeed, the initialization steps (calculation of

the total emitted power in each cell, stochastic genera-

tions of source points, initial directions and wavenum-

bers) and the geometrical construction of the optical

paths, which are common to the three methods, take

most of the calculation time. In other words, these

methods differ only by the final step for which the CPU

time is negligible.

4. Results and discussion

A non-isothermal, emitting and absorbing medium

between two parallel infinite isothermal semi-reflecting

opaque walls, perpendicular to the x direction and

characterized by diffuse emissivities, defines a bench-

mark case since the radiative power profile and the

fluxes on the walls are given by well-known expressions

(see [47, Eq. (VII.110)] or [48]), called here reference

solution. Although this system is 1D, all the calculations

here have been carried out with 3D calculation grids in

order to check the capacity of the methods for dealing

with actual 3D systems. The chosen computation system

is a cube of edge length L. To simulate the infinite

transverse dimensions of the 1D benchmark case along

the y and z directions, total specular reflection condi-

tions (i.e., symmetry conditions) are considered for the

four lateral faces of the cube. If Ny and Nz are the

numbers of meshes in the y and z directions, the radia-

tive powers and the wall fluxes are calculated in NyNz

cells at a given x location. All these calculations lead, at

a given x location, not only to a mean result for each

quantity, but also to the corresponding standard devi-

ation r.
In all the calculations, the temperature profile T ðxÞ

always has a symmetric parabolic shape, but different

values of the temperature Tcs of the medium center and

of the wall temperature Tw have been considered.
Several random number generators have been tested,

and insensitivity of the results to the generator used has

been observed. All the calculations presented in this

paper have been performed with a combined multiple

recursive generator developed by L’Ecuyer [49] and

called MRG32k3a.

4.1. Case of a gray medium

Although no actual medium is gray, the gray as-

sumption is useful since it allows the optical thickness of

a medium to be controlled.

2804 L. Tess�ee et al. / International Journal of Heat and Mass Transfer 45 (2002) 2797–2814



First, the influence of the total number N of optical

paths has been studied. For a given case, the product of

the result variance r2 and the computation time t is in-
dependent of N, as shown for instance in Fig. 5. In

practice, the computation time t is proportional to the

total number of cells crossed by all the optical paths, i.e.,

t is proportional to N, to the mean length of the optical

paths and to the number of spatial discretizations per

unit distance averaged over the three directions. Then,

for all the considered conditions (optical thickness,

temperature profile and wall emissivity) the influences of

the total number N of optical paths, the value of the

cutoff level sl and the numbers of spatial discretizations
Nx, Ny and Nz have been studied in order to choose

suitable values for these parameters.

The three Monte Carlo formulations studied in Sec-

tion 2 are applied to the first five cases defined in Table

1. The wall emissivity ew is equal to 0.8 and the cube

edge length L to 0.2 m. The total number N of optical

paths has been adjusted in each case in order to use the

same computation time, about 600 s on a single NEC

SX5 processor. The comparison of standard deviations

r obtained from the different approaches is then signif-

icant since the performance of a Monte Carlo method is

defined as the product of the computation time t and the

variance r2 [22]. It is worth noting that the computation
time would be shorter if a simpler and faster locating

procedure, allowed by the actual 1D geometry, were

used. Indeed, calculations have been carried out with a

complex locating procedure developed in order to deal

with 3D grid made up of irregular meshes closed by 12

faces.

Results relative to case 1, which corresponds to a

semi-transparent medium of optical thickness equal to 2,

and obtained from the ERM, ARM and FM formula-

tions, associated with the UD and NUD of the optical

Fig. 5. Influence of the total number N of optical paths on mean power and on standard deviation over NyNz values of ePP (case 1, FM–
NUD).

Table 1

Benchmark cases

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

jL 2 0.1 40 2 2 Actual gases Actual gases

L (m) 0.2 0.2 0.2 0.2 0.2 0.2 4

ew 0.8 0.8 0.8 0.8 0.8 1 1

Tcs (K) 2500 2500 2500 500 300 2500 2500

Tw (K) 500 500 500 2500 290 500 500

Nx � Ny � Nz 20� 20� 20 20� 20� 20 400� 5� 4 20� 20� 20 20� 20� 20 20� 20� 20 20� 20� 20

N � 10�6 1 0.2 1.35 1 1 1 1.8

sl � 100 1 0.1 0.1 1 1 1 0.1

t (s) �600 �600 �600 �600 �600 �600 �600
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path source points, are shown in Figs. 6 and 7 and Table

2. Calculated mean radiative powers agree with the

reference solution. Differences appear only in the ob-

tained standard deviation values. FM results depend

slightly on the spatial distribution of the optical path

source points. Nevertheless, with this formulation, the

NUD based on the powers emitted by the cells leads to

the smallest standard deviations, which was expected in

particular in the hot region. On the contrary, both ARM

and ERM results are very sensitive to the spatial dis-

tribution of the optical path source points. In particular,

as the number of optical paths originating from a cold

region is small, large standard deviation values are ob-

served for ERM in Fig. 6 in this type of region. Recip-

rocally, rather good results are obtained from this

approach in the hot region. The same explanation can be

Fig. 6. Mean power value and standard deviation over NyNz values of ePP (case 1, NUD).

Fig. 7. Mean power value and standard deviation over NyNz values of ePP (case 1, UD).
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given in the hot region for the ARM formulation asso-

ciated with the NUD of the optical path source points.

Most of the optical paths which cross the hot zone

originate from the cold and warm regions and their

numbers are too small to accurately treat the hot region.

To summarize, it is better, in general, to use the UD with

the ARM and ERM formulations and the NUD with

the FM formulation.

Case 2 corresponds to an optically thin medium be-

tween very absorbing walls. The required cutoff level is

then smaller than the one previously used (10�3 instead

of 10�2). Indeed, if the cutoff criterion is too large, for

many optical paths the cumulative transmissivity along

the path reaches the cutoff level value just after en-

countering a wall, and the remaining power is then

placed in cells close to the walls. The accumulation of

the remaining power in a cell leads to a large error in the

calculation of the absorption in this cell. With a wall

emissivity equal to 0 or 1, this problem disappears. As a

consequence, to obtain the same computation time in

case 2 than in case 1, the total number N of optical paths

must then be lower in case 2 than in case 1, as shown in

Table 1, since the mean length of the optical paths is

enhanced, due to both the lower medium optical thick-

ness and the lower cutoff level value. As in case 1, the

power is emitted by the medium, mainly by its hot

central zone. But unlike case 1, in which absorption is

mainly due to the whole medium, the power is mainly

absorbed by the cold walls in case 2. Therefore, the

reciprocal approaches are not suitable in case 2 char-

acterized by an exchange between two strongly non-

isothermal zones. The best results are then obtained

from the FM–NUD formulation in the whole medium

and on the walls, as illustrated by Fig. 8 and Table 2.

The ARM formulation leads to the worst results in the

medium center where absorption is negligible. ARM–

UD is practically as accurate as FM–NUD in the vi-

cinity of the walls, where the ratio absorption/emission is

much larger than in the hot region. The ERM approach

is always unsatisfactory in case 2.

For case 3, in which the medium is optically thick, a

calculation grid with a refined spatial discretization in

direction x is required in order to have a better de-

scription of the temperature profile since a cell is as-

sumed to be isothermal. Moreover, a low value of the

cutoff level must be used in order to increase the mean

length of the optical paths. A cutoff level equal to 0.01

leads to an overestimation of the absorption in the hot

zone and to an underestimation in the cold zones, be-

cause the optical paths mainly originating from the hot

zone do not reach the cold ones. Furthermore, a small

increase of the total number N of optical paths is re-

quired since the mean length of the optical paths is

shorter than in the previous cases, although the cutoff

criterion is smaller. In these optical and thermal condi-

tions, all the calculated mean radiative power fields doT
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not agree with the reference solution, as shown in Fig. 9.

The fluctuations of the three results are due to the re-

quired large number of spatial discretizations between

the walls. The medium is so optically thick that ex-

changes are restricted to neighboring cells, which are

nearly isothermal. That is the reason why the two re-

ciprocal formulations are better than FM. As the whole

medium and the walls are very absorbing, ARM is better

than ERM everywhere. However, in the center of the

medium, where emission is an important phenomenon,

ERM provides good results as well. In the center of the

medium, ARM standard deviation is 200 times smaller

than the FM one, i.e., to obtain the same standard de-

viation, the FM requires a computation time 40 000

times larger than the ARM one.

Case 4 is defined by hot walls separated by a cold

absorbing medium. The FM formulation produces the

best results, as illustrated by Fig. 10, for the same reason

Fig. 8. Mean power value and standard deviation over NyNz values of ePP (case 2).

Fig. 9. Mean power value and standard deviation over NyNz values of ePP (case 3).
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than in case 2, i.e., case 4 is characterized by exchanges

between strongly non-isothermal zones. ARM results

are better than ERM ones because the medium is more

absorbing than emitting.

Case 5 is a thermal configuration similar to that of

Fournier [32] and Cherkaoui et al. [33,34]. As the system

is nearly isothermal, the reciprocal methods are more

efficient, as shown in Fig. 11. These results confirm those

of the previous authors. The standard deviation relative

to ARM results is roughly 25 times smaller than the one

relative to FM results.

The formulation associated with the spatial distri-

bution of the optical path source points, which leads to

the best results for the power field and the wall fluxes, is

given in Table 3 for each case. The most suitable for-

mulations for wall flux calculations can differ from those

associated with power calculations. In case 1, corre-

sponding to a semi-transparent medium characterized

Fig. 11. Mean power value and standard deviation over NyNz values of ePP (case 5).

Fig. 10. Mean power value and standard deviation over NyNz values of ePP (case 4).
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by an intermediate value of the optical thickness, the

layer between the system center and a wall has an

equivalent optical thickness of 1.8 (Hottel’s equivalent

radius). Consequently a significant part of radiation

emitted by the hot central region reaches the walls. In

this case, the ERM–UD formulation is the most suitable

for the wall flux calculation: on one hand, absorption of

radiation emitted by the hot region is taken into account

correctly by the reciprocity principle; on the other hand,

the number of optical paths originating from a wall is

much larger with the UD than with the NUD. In case 2,

corresponding to a thin medium, as for power calcula-

tion, the ARM formulation is equivalent to the FM one

in the vicinity of the walls. The emission by the hot re-

gion is then accurately determined, especially with the

NUD of the optical path source points. In case 3, rela-

tive to a very thick medium, the same analysis as

for power calculations leads to the conclusion that

the ARM–UD is the best formulation for the wall

flux calculation. In case 4, since the walls are practically

the only radiation source, the ERM–NUD formulation

is the most suitable approach for the wall flux calcula-

tion.

4.2. Case of a real gas

Two benchmark cases, similar to those of [50] and

also defined in Table 1, allow comparison of the be-

haviors of the three Monte Carlo formulations with

actual gas mixtures. Gas radiative properties are treated

in a correlated manner by a CK model [42–45] based on

the parameters of Soufiani and Taine [46]. The reference

solution is also integrated over the whole spectrum ac-

cording to the CK model. The influence of the optical

thickness is replaced by that of the cube edge length L.

The wall emissivity ew is equal to 1. The CO2–H2O–N2

mixture, at atmospheric pressure, is characterized by

CO2 and H2O molar fractions equal to 0.116 and 0.155,

respectively. The total number N of optical paths is

adjusted in order to have the same computation time for

all the calculations.

Case 6 corresponds to a thin medium, as the case 2.

Indeed, according to the Hottel’s charts [4], the total

emissivities of the whole medium assumed to be iso-

thermal at 2500 and 500 K are equal to 0.03 and 0.15,

respectively. Consequently, the behaviors of the three

Monte Carlo formulations are similar to those observed

in the case 2, as shown in Figs. 12 and 8. As in case 2, the

ARM is inaccurate in the medium core. In this region,

the ERM is rather accurate but its standard deviation

becomes larger in the regions close to the walls. The FM

is the most accurate of the three methods.

In case 7, the total emissivity of the whole medium

ranges from 0.19 at 2500 K to 0.50 at 700 K. For these

intermediate values of the equivalent optical thickness,

an interesting conclusion can be drawn: the best ap-T
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proach is a combination of the two reciprocal Monte

Carlo formulations. In the central hot zone, the ERM

must be used, while in the cold zones close to the walls

the ARM approach is more suitable, as illustrated by

Fig. 13.

The approaches which give the best results for the

radiative powers and the radiative wall fluxes are sum-

marized for all cases in Table 3.

5. Conclusion

Two formulations of the Monte Carlo method based

on the reciprocity principle, have been developed and

discussed. The reciprocity principle is not only consid-

ered from the optical path point of view, as in the reverse

Monte Carlo method [30,31], but also from the energy

point of view.

Fig. 12. Mean power value and standard deviation over NyNz values of ePP (case 6).

Fig. 13. Mean power value and standard deviation over NyNz values of ePP (case 7).
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One-dimensional benchmark cases involving gray

media or actual gas-mixtures and different optical thick-

nesses and thermal conditions have been defined. In

actual gas-mixtures, gas radiative properties are treated

in a correlated manner by a CK model. For a given

computation time, comparisons have been made between

standard deviations on flux and power fields, calculated

by the above-mentioned approaches and a conventional

forward Monte Carlo method. Although these problems

are 1D, the calculations have been carried out with 3D

calculation grids in order to check the capacity of the

methods for dealing with actual 3D systems.

Advantages and drawbacks of the three approaches

have been discussed. In particular, the forward Monte

Carlo method appears to be the most suitable for op-

tically thin media, or semi-transparent media char-

acterized by important temperature gradients. On the

contrary, the reciprocal formulations are the most suit-

able for optically thick media or nearly isothermal me-

dia. These results have been found for fictitious gray

media and actual gas-mixtures. In the general case, the

three methods can be used concurrently in order to

improve the accuracy by choosing the most suitable

method at each point of an actual system.

The results given by the three methods are obtained

simultaneously with only one calculation. In terms of

computation time, it is not more expensive to obtain the

results from the three methods than to obtain the results

from only one given method.
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Appendix A. The CK model

The parameters of the CK model used here have been

generated for applications at atmospheric pressure in the

temperature range 300–2500 K [46]. The useful wave-

number range (150–9200 cm�1) is divided into 44 spec-

tral bands b for H2O. However, CO2 absorbs radiation in

only 17 of these bands. Gauss quadratures with 7 points

g and g2 are used for H2O and CO2 respectively in their

absorption bands, i.e., 49 quadrature points are used in

the 17 overlapping bands. Therefore, 1022 pseudo-spec-

tral points have to be considered, which is not a draw-

back here since a Monte Carlo approach is used.

The expression of the total power emitted by a vol-

ume Vi is

P ei ¼
X44
b¼1

X7
g¼1

Xg2max
g2¼1

DP ei ðb; g; g2Þ; ðA:1aÞ

DP ei ðb; g; g2Þ ¼ 4pVi kH2O
ibg

h
þ kCO2ibg2

i
I0b ðTiÞxgxg2Dmb;

ðA:1bÞ

where kH2O
ibg is the pseudo-spectral absorption coefficient

of H2O in Vi and xg; xg2 the weights associated with the

quadrature points. For transparency CO2 bands, g2max
and xg2 are taken equal to 1. The random generation

of a pseudo-spectral point is equivalent to the random

generation of the three parameters b; g and g2. The
probability to have these three parameters simulta-

neously is given by

Pðb; g; g2Þ ¼
DP ei ðb; g; g2Þ

P ei
: ðA:2Þ

The three parameters bn; gn and g2n are deduced from
the generation of only one uniform [0-1] random num-

ber R according to the following double inequalityXbn
b¼1

Xgn
g¼1

Xg2n�1
g2¼1

Pðb; g; g2Þ

< R6

Xbn
b¼1

Xgn
g¼1

Xg2n
g2¼1

Pðb; g; g2Þ: ðA:3Þ
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